3.11.36 \(\int \frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{(d+e x)^4} \, dx\) [1036]

Optimal. Leaf size=39 \[ -\frac {c}{2 e (d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}} \]

[Out]

-1/2*c/e/(e*x+d)/(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 39, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {656, 621} \begin {gather*} -\frac {c}{2 e (d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(d + e*x)^4,x]

[Out]

-1/2*c/(e*(d + e*x)*Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2])

Rule 621

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[2*((a + b*x + c*x^2)^(p + 1)/((2*p + 1)*(b + 2*
c*x))), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]

Rule 656

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[e^m/c^(m/2), Int[(a +
b*x + c*x^2)^(p + m/2), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p] && EqQ[
2*c*d - b*e, 0] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {\sqrt {c d^2+2 c d e x+c e^2 x^2}}{(d+e x)^4} \, dx &=c^2 \int \frac {1}{\left (c d^2+2 c d e x+c e^2 x^2\right )^{3/2}} \, dx\\ &=-\frac {c}{2 e (d+e x) \sqrt {c d^2+2 c d e x+c e^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.00, size = 27, normalized size = 0.69 \begin {gather*} -\frac {\sqrt {c (d+e x)^2}}{2 e (d+e x)^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c*d^2 + 2*c*d*e*x + c*e^2*x^2]/(d + e*x)^4,x]

[Out]

-1/2*Sqrt[c*(d + e*x)^2]/(e*(d + e*x)^3)

________________________________________________________________________________________

Maple [A]
time = 0.54, size = 35, normalized size = 0.90

method result size
risch \(-\frac {\sqrt {\left (e x +d \right )^{2} c}}{2 \left (e x +d \right )^{3} e}\) \(24\)
gosper \(-\frac {\sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{2 \left (e x +d \right )^{3} e}\) \(35\)
default \(-\frac {\sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{2 \left (e x +d \right )^{3} e}\) \(35\)
trager \(\frac {\left (e x +2 d \right ) x \sqrt {x^{2} c \,e^{2}+2 c d e x +c \,d^{2}}}{2 d^{2} \left (e x +d \right )^{3}}\) \(43\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x,method=_RETURNVERBOSE)

[Out]

-1/2/(e*x+d)^3/e*(c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: Error executing code in Maxima: expt: undefined: 0 to a negative e
xponent.

________________________________________________________________________________________

Fricas [A]
time = 3.07, size = 55, normalized size = 1.41 \begin {gather*} -\frac {\sqrt {c x^{2} e^{2} + 2 \, c d x e + c d^{2}}}{2 \, {\left (x^{3} e^{4} + 3 \, d x^{2} e^{3} + 3 \, d^{2} x e^{2} + d^{3} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x, algorithm="fricas")

[Out]

-1/2*sqrt(c*x^2*e^2 + 2*c*d*x*e + c*d^2)/(x^3*e^4 + 3*d*x^2*e^3 + 3*d^2*x*e^2 + d^3*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c \left (d + e x\right )^{2}}}{\left (d + e x\right )^{4}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e**2*x**2+2*c*d*e*x+c*d**2)**(1/2)/(e*x+d)**4,x)

[Out]

Integral(sqrt(c*(d + e*x)**2)/(d + e*x)**4, x)

________________________________________________________________________________________

Giac [A]
time = 0.93, size = 22, normalized size = 0.56 \begin {gather*} -\frac {\sqrt {c} e^{\left (-1\right )} \mathrm {sgn}\left (x e + d\right )}{2 \, {\left (x e + d\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*e^2*x^2+2*c*d*e*x+c*d^2)^(1/2)/(e*x+d)^4,x, algorithm="giac")

[Out]

-1/2*sqrt(c)*e^(-1)*sgn(x*e + d)/(x*e + d)^2

________________________________________________________________________________________

Mupad [B]
time = 0.44, size = 34, normalized size = 0.87 \begin {gather*} -\frac {\sqrt {c\,d^2+2\,c\,d\,e\,x+c\,e^2\,x^2}}{2\,e\,{\left (d+e\,x\right )}^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2)/(d + e*x)^4,x)

[Out]

-(c*d^2 + c*e^2*x^2 + 2*c*d*e*x)^(1/2)/(2*e*(d + e*x)^3)

________________________________________________________________________________________